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Abstract

Over the last decade a tremendous effort has been made in developing
mathematical models of the immunology dynamics under the attack of the human
immunodeficiency virus (HIV) and under the influence of antiretroviral therapies.
The purpose of this thesis is to propose a class of HIV dynamics models with time
delay and study their global properties such as positive invariance properties,
boundedness of the solutions and stability analysis of the steady states of the
models. Studying such properties is important for understanding the associated
characteristics of the HIV dynamics and guide for developing efficient anti-viral
drug therapies. By constructing Lyapunov functionals and using LaSalle invariant
principle, we establish the global stability of the steady states of the models. Now
we present brief description about the thesis:

Chapter 1 presents a general background for the research addressed in this thesis.
A Dbrief background on immunology and how the virus interacts with the immune
system is presented. We give an overview of some HIV mathematical models given
in the literature. Model with discrete time delay and model with distributed time
delay are also presented. Some basic concepts of ordinary differential equations
(ODEs), and delayed differential equations (DDESs) are outlined.

In Chapter 2, we investigate the global properties of two HIV dynamics models.
The models are 5- dimensional systems of DDEs that describe the interaction
process of the HIV with two classes of target cells, CD4+ T cells and macrophages
and take into account the time delay between the time the target cells contacted by
the virus and the time the emission of infectious (matures) virus particles. In the
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first model, two types of discrete time delays are incorporated. The second model
incorporates two types of distributed time delays. The incidence rate of virus
infection is given by the Beddington-DeAngelis functional response. The basic
reproduction number RO is identified which completely determines the global
dynamics of the models. By constructing suitable Lyapunov functionals, we have
proven that if RO < 1 then the uninfected steady state is globally asymptotically
stable (GAS), and if RO > 1 then the infected steady state exists and it is GAS.

In Chapter 3, we study the global stability of two mathematical models for HIV
infection with Crowley- Martin functional response. The models describe the
interaction of the HIV with two classes of target cells. Two types of discrete time
delays are incorporated in the first model. The second model takes into account two
types of distributed delays. The basic properties of these models are studied.
Lyapunov functionals are constructed and LaSalle-type theorem is used to establish
the global asymptotic stability of the uninfected and infected steady states of these
models. We have proven that if the basic reproduction number RO < 1 then the
uninfected steady state is GAS, and if RO > 1 then the infected steady state exists
and it is GAS.

Chapter 4 is devoted to study the global stability of HIV infection model with two
classes of target cells. We assume that the infection rate is given by a general
nonlinear functional response. We have incorporated two types of distributed time
delays into the model. We have established a set of conditions which are sufficient
for the global stability of the steady states. Using Lyapunov functionals we have
proven that if RO <1, then the uninfected steady state is GAS, and if the infected
steady state exists then it is GAS.



